"

mg游戏平台-mg游戏平台网址-官网┋拥有全球最顶尖的原生APP,每天为您提供千场精彩体育赛事,mg游戏平台-mg游戏平台网址-官网┋更有真人、彩票、电子老虎机、真人电子竞技游戏等多种娱乐方式选择,mg游戏平台-mg游戏平台网址-官网┋让您尽享娱乐、赛事投注等,且无后顾之忧!

    1. <meter id="ffhpt"><u id="ffhpt"></u></meter>
      <meter id="ffhpt"><samp id="ffhpt"></samp></meter>
    2. <meter id="ffhpt"></meter>

      <label id="ffhpt"><p id="ffhpt"></p></label><meter id="ffhpt"></meter><dd id="ffhpt"></dd>
          1. <label id="ffhpt"></label>
            "
            收藏本站
            收藏 | 投稿 | 手机打开
            二维码
            手机客户端打开本文

            Study of the Air-Sea Interaction During Typhoon Kaemi (2006)

            刘磊  费建芳  林霄沛  宋翔州  黄小刚  程小平  
            【摘要】:The high-resolution Weather Research and Forecasting (WRF) model is coupled to the Princeton Ocean Model (POM) to investigate the effect of air-sea interaction during Typhoon Kaemi that formed in the Northwest Pacific at 0000 UTC 19 July 2006. The coupled model can reasonably reproduce the major features of ocean response to the moving tropical cyclone (TC) forcing, including the deepening of ocean mixed layer (ML), cooling of sea surface temperature (SST), and decaying of typhoon. Due to the appearance of maximum SST cooling to the left of the simulated typhoon track, two points respectively located to the left (16.25 N, 130.1 E, named as A, the maximum SST cooling region) and right (17.79 N, 130.43 E, named as B) of the typhoon track are taken as the sampling points to study the mechanisms of SST cooling. The low temperature at point A has a good correlation with the 10-m winds but does not persist for a long time, which illustrates that the temperature dropping produced by upwelling is a quick process. Although the wind-current resonance causes oscillations to the left of typhoon track at point A, the fluctuation is not so strong as that at point B. The thin ML and upwelling produced by the Ekman pumping from strong 10-m winds are the main reason of maximum SST cooling appearing to the left of the typhoon track. Due to weaker 10-m winds and thicker and warmer ML at point B, the colder water under the thermocline is surpressed and the temperature dropping is not dramatic when the strongest 10-m winds occur. Afterwards, the temperature gradually decreases, which is found to be caused by the inertial oscillations of the wind-current system.
            下载App查看全文

            (如何获取全文? 欢迎:购买知网充值卡、在线充值、在线咨询)

            CAJViewer阅读器支持CAJ、PDF文件格式,AdobeReader仅支持PDF格式


            知网文化
            中国知网广告投放
             快捷付款方式  订购知网充值卡  订购热线  帮助中心
            • 400-819-9993
            • 010-62982499
            • 010-62783978


            mg游戏平台-mg游戏平台网址-官网

            1. <meter id="ffhpt"><u id="ffhpt"></u></meter>
              <meter id="ffhpt"><samp id="ffhpt"></samp></meter>
            2. <meter id="ffhpt"></meter>

              <label id="ffhpt"><p id="ffhpt"></p></label><meter id="ffhpt"></meter><dd id="ffhpt"></dd>
                  1. <label id="ffhpt"></label>