1. <meter id="ffhpt"><u id="ffhpt"></u></meter>
      <meter id="ffhpt"><samp id="ffhpt"></samp></meter>
    2. <meter id="ffhpt"></meter>

      <label id="ffhpt"><p id="ffhpt"></p></label><meter id="ffhpt"></meter><dd id="ffhpt"></dd>
          1. <label id="ffhpt"></label>
            收藏 | 投稿 | 手机打开

            A data assimilation-based method for optimizing parameterization schemes in a land surface process model

            ZHANG ShengLei  CHEN LiangFu  SU Lin  JIA Li  
            【摘要】:Optimizing the parameters of a land surface process model(LSPM) through data assimilation(DA) can not only improve and perfect the parameterization schemes in the LSPM through the physical mechanism, but also increase its regional adaptability and simulation capability. This has practical importance for improving simulation results and the climate-prediction capability of general circulation models(GCMs) and regional climate models(RCMs). This paper presents a DA-based method for optimizing the parameterization schemes in LSPMs. We optimize the unsaturated-soil water flow(Un SWF) model as an example by developing a soil-moisture assimilation scheme based on the Un SWF model and the extended Kalman filter(EKF) algorithm, and then combining them with the Variable Infiltration Capacity(VIC) model. Using a month as the assimilation window, we used the Shuffled Complex Evolution–University of Arizona(SCE-UA) algorithm to minimize the objective function through simulated and assimilated soil moisture, achieved the best fit with the given objective function measurement, and optimized the parameters of the Un SWF model, including the saturated-soil hydraulic conductivity, moisture content, matrix potential, and the Clapp and Hornberger constant. The optimal values of the model parameters were obtained during the DA period(the year 1986), and then the optimized parameters were used to improve the Un SWF model. Finally, numerical simulation experiments were carried out from 1986 to 1993 to evaluate the simulation capability of the improved model and to explore and realize the DA-based method for optimizing the soil water parameterization scheme in LSPMs. The experimental results indicated that the optimized model parameters improved and perfected the model based on the physical mechanism, and increased its simulation capability; the optimized model parameters had good temporal portability and their adaptability was stronger, achieving the aim of improving the model. Therefore, this method is reasonable and feasible. This paper provides a good reference for DA-based optimization of the parameterization schemes in LSPMs.

            中国期刊全文数据库 前20条
            1 Xiangjun Tian;Zhenghui Xie;Zhaonan Cai;Yi Liu;Yu Fu;Huifang Zhang;;The Chinese carbon cycle data-assimilation system(Tan-Tracker)[J];Chinese Science Bulletin;2014年14期
            2 ;Direct assimilation of satellite radiance data in GRAPES variational assimilation system[J];Chinese Science Bulletin;2008年22期
            3 ;Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES[J];Chinese Science Bulletin;2008年22期
            4 DALE M.Barker;;Monitoring the 2008 cold surge and frozen disasters snowstorm in South China based on regional ATOVS data assimilation[J];Science China(Earth Sciences);2010年08期
            5 ;An explicit four-dimensional variational data assimilation method[J];Science in China(Series D:Earth Sciences);2007年08期
            6 ;An explicit four-dimensional variational data assimilation method based on the proper orthogonal decomposition: Theoretics and evaluation[J];Science in China(Series D:Earth Sciences);2009年02期
            7 ;An experimenal analysis for the impact of 2D variation assimilation of satellite data on typhoon track simulation[J];Acta Oceanologica Sinica;2003年04期
            8 ;An Ensemble-Based Three-Dimensional Variational Assimilation Method for Land Data Assimilation[J];Atmospheric and Oceanic Science Letters;2009年03期
            9 丁杨;庄世宇;顾建峰;;ASSIMILATION OF OBSERVED SURFACE WIND WITH GRAPES[J];Journal of Tropical Meteorology;2010年01期
            10 朱红芳;王东勇;管兆勇;刘勇;傅云飞;;Effects of Different Initial Fields on GRAPES Numerical Prediction[J];Acta Meteorologica Sinica;2007年04期
            12 王斌;赵颖;;A New Approach to Data Assimilation[J];Acta Meteorologica Sinica;2006年03期
            13 ;Three-dimensional variational data assimilation implemented in numerical modeling for Wuhan torrential rain in July 1998[J];Progress in Natural Science;2002年06期
            14 李泓;柳俊杰;艾莲娜·费尔蒂歌;尤金尼亚·康奈;埃瑞克·考斯特里奇;伊斯万·苏纽;;IMPROVED ANALYSES AND FORECASTS WITH AIRS TEMPERATURE RETRIEVALS USING THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER[J];Journal of Tropical Meteorology;2011年01期
            15 赵娟;王斌;刘娟娟;;Impact of Analysis-time Tuning on the Performance of the DRP-4DVar Approach[J];Advances in Atmospheric Sciences;2011年01期
            16 滕加俊;张瑰;黄思训;;Some theoretical problems on variational data assimilation[J];Applied Mathematics and Mechanics(English Edition);2007年05期
            17 薛纪善;Progresses of Researches on Numerical Weather Prediction in China: 1999-2002[J];Advances in Atmospheric Sciences;2004年03期
            18 梁爱民;张庆红;刘开宇;申红喜;;The 3D-Var Data Assimilation Experiments on a Dense Fog Event over the Central Plain of China[J];Acta Meteorologica Sinica;2009年01期
            19 ;TAMDAR Observation Assimilation in WRF 3D-Var and Its Impact on Hurricane Ike (2008) Forecast[J];Atmospheric and Oceanic Science Letters;2012年03期
            20 薛纪善;刘艳;;Numerical Weather Prediction in China in the New Century——Progress,Problems and Prospects[J];Advances in Atmospheric Sciences;2007年06期
            中国重要会议论文全文数据库 前2条
            1 Xiangjun Tian;Jianhua Sun;Feng Chen;Yuanchun Zhang;;A PODEn4DVar-based Radar Data Assimilation Scheme:Formulation and Preliminary Results from Real-data Experiments with Advanced Research WRF(ARW)[A];第八次全国动力气象学术会议论文摘要[C];2013年
            2 ;An evaluation study of the DRP-4-DVar approach with the Lorenz-96 model[A];2012北京气象学会中青年优秀论文评选论文集[C];2012年
             快捷付款方式  订购知网充值卡  订购热线  帮助中心
            • 400-819-9993
            • 010-62982499
            • 010-62783978


            1. <meter id="ffhpt"><u id="ffhpt"></u></meter>
              <meter id="ffhpt"><samp id="ffhpt"></samp></meter>
            2. <meter id="ffhpt"></meter>

              <label id="ffhpt"><p id="ffhpt"></p></label><meter id="ffhpt"></meter><dd id="ffhpt"></dd>
                  1. <label id="ffhpt"></label>